Part Number Hot Search : 
1N523 A5800867 SMAJ20A P6SMB68A EZ20D5 AM252 P4034 NC7SZ32M
Product Description
Full Text Search
 

To Download MAX990ESA Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 19-1229; Rev 1; 7/97
Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators
_______________General Description
The MAX985/MAX986/MAX989/MAX990/MAX993/ MAX994 single/dual/quad micropower comparators feature low-voltage operation and Rail-to-Rail(R) inputs and outputs. Their operating voltage ranges from +2.5V to +5.5V, making them ideal for both 3V and 5V systems. These comparators also operate with 1.25V to 2.75V dual supplies. They consume only 11A of supply current while achieving a 300ns propagation delay. The common-mode input voltage range extends 250mV beyond the supply rails. Input bias current is typically 1.0pA, and input offset voltage is typically 0.5mV. Internal hysteresis ensures clean output switching, even with slow-moving input signals. The output stage's unique design limits supply-current surges while switching, virtually eliminating the supply glitches typical of many other comparators. This design also minimizes overall power consumption under dynamic conditions. The MAX985/MAX989/MAX993 have a push/pull output stage that sinks as well as sources current. Large internal output drivers allow railto-rail output swing with loads up to 8mA. The MAX986/MAX990/MAX994 have an open-drain output stage that can be pulled beyond V CC to 6V (max) above VEE. These open-drain versions are ideal for level translators and bipolar to single-ended converters. The single MAX985/MAX986 are available in tiny 5-pin SOT23 packages.
____________________________Features
o 11A Quiescent Supply Current o +2.5V to +5.5V Single-Supply Operation o Common-Mode Input Voltage Range Extends 250mV Beyond the Rails o 300ns Propagation Delay o Push/Pull Output Stage Sinks and Sources 8mA Current (MAX985/MAX989/MAX993) o Open-Drain Output Voltage Extends Beyond VCC (MAX986/MAX990/MAX994) o Unique Output Stage Reduces Output Switching Current, Minimizing Overall Power Consumption o 80A Supply Current at 1MHz Switching Frequency o No Phase Reversal for Overdriven Inputs o Available in Space-Saving Packages: SOT23 (MAX985/MAX986) MAX (MAX989/MAX990)
MAX985/MAX986/MAX989/MAX990/MAX993/MAX994
______________Ordering Information
PART MAX985EUK-T MAX985ESA MAX986EUK-T MAX986ESA TEMP. RANGE -40C to +85C -40C to +85C -40C to +85C -40C to +85C PINPACKAGE 5 SOT23-5 8 SO 5 SOT23-5 8 SO SOT TOP MARK ABYZ -- ABZA --
_____________________Selector Guide
PART MAX985 MAX986 MAX989 MAX990 MAX993 MAX994 COMPARATORS PER PACKAGE 1 1 2 2 4 4 OUTPUT STAGE Push/Pull Open-Drain Push/Pull Open-Drain Push/Pull Open-Drain PINPACKAGE 8 SO/ 5 SOT23-5 8 SO/ 5 SOT23-5 8 SO/MAX 8 SO/MAX 14 SO 14 SO
Ordering Information continued at end of data sheet. Typical Application Circuit appears at end of data sheet.
_________________Pin Configurations
TOP VIEW
OUT 1 5 VEE
________________________Applications
Portable/BatteryPowered Systems Mobile Communications Zero-Crossing Detectors Window Comparators Level Translators Threshold Detectors/ Discriminators Ground/Supply Sensing Applications IR Receivers Digital Line Receivers
VCC 2
MAX985 MAX986
4 IN-
IN+ 3
SOT23
Pin Configurations continued at end of data sheet. Rail-to-Rail is a registered trademark of Nippon Motorola Ltd.
1
________________________________________________________________ Maxim Integrated Products
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800. For small orders, phone 408-737-7600 ext. 3468.
Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators MAX985/MAX986/MAX989/MAX990/MAX993/MAX994
ABSOLUTE MAXIMUM RATINGS
Supply Voltage (VCC to VEE) ...................................................6V IN_-, IN_+ to VEE .......................................-0.3V to (VCC + 0.3V) OUT_ to VEE MAX985/MAX989/MAX993 ....................-0.3V to (VCC + 0.3V) MAX986/MAX990/MAX994.....................................-0.3V to 6V OUT_ Short-Circuit Duration to VEE or VCC .......................10sec Continuous Power Dissipation (TA = +70C) 5-Pin SOT23 (derate 7.10mW/C above +70C)...........571mW 8-Pin SO (derate 5.88mW/C above +70C).................471mW 8-Pin MAX (derate 4.10mW/C above +70C) ............330mW 14-Pin SO (derate 8.33 mW/C above +70C)..............667mW Operating Temperature Range ...........................-40C to +85C Storage Temperature Range .............................-65C to +150C Lead Temperature (soldering, 10sec) .............................+300C
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS
(VCC = +2.7V to +5.5V, VEE = 0V, VCM = 0V, TA = -40C to +85C, unless otherwise noted. Typical values are at TA = +25C.) (Note 1) PARAMETER Supply Voltage Supply Current per Comparator Power-Supply Rejection Ratio Common-Mode Voltage Range (Note 2) Input Offset Voltage (Note 3) Input Hysteresis Input Bias Current (Note 4) Input Offset Current Input Capacitance Common-Mode Rejection Ratio Output Leakage Current (MAX986/MAX990/ MAX994 only) Output Short-Circuit Current SYMBOL VCC CONDITIONS Inferred from PSRR test VCC = 5V ICC VCC = 2.7V PSRR VCMR 2.5V VCC 5.5V TA = +25C TA = -40C to +85C VOS VHYST IB IOS CIN CMRR ILEAK VOUT = high Sourcing or sinking, VOUT = VEE or VCC VCC = 5V, ISINK = 8mA VCC = 2.7V, ISINK = 3.5mA VCC = 5V, ISOURCE = 8mA VCC = 2.7V, ISOURCE = 3.5mA TA = +25C TA = -40C to +85C TA = +25C TA = -40C to +85C TA = +25C TA = -40C to +85C TA = +25C TA = -40C to +85C 4.6 4.45 2.4 2.3 2.55 4.85 V 0.15 VCC = 5V VCC = 2.7V 95 35 0.2 0.4 0.55 0.3 0.4 V 52 Full common-mode range TA = +25C TA = -40C to +85C 3 0.001 0.5 1.0 80 1.0 10 TA = +25C TA = -40C to +85C TA = +25C TA = -40C to +85C 55 VEE 0.25 VEE 0.5 80 VCC + 0.25 VCC 5 7 mV mV nA pA pF dB A 11 MIN 2.5 12 TYP MAX 5.5 20 24 20 24 dB V A UNITS V
ISC
mA
OUT Output Voltage Low
VOL
OUT Output Voltage High (MAX985/MAX989/ MAX993 only)
VOH
2
_______________________________________________________________________________________
Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators
ELECTRICAL CHARACTERISTICS (continued)
(VCC = +2.7V to +5.5V, VEE = 0V, VCM = 0V, TA = -40C to +85C, unless otherwise noted. Typical values are at TA = +25C.) (Note 1) PARAMETER OUT Rise Time (MAX985/MAX989/ MAX993 only) OUT Fall Time SYMBOL tRISE VCC = 5.0V CONDITIONS CL = 15pF CL = 50pF CL = 200pF CL = 15pF tFALL VCC = 5.0V CL = 50pF CL = 200pF MAX985/MAX989/ 10mV overdrive MAX993 only 100mV overdrive tPDPropagation Delay CL = 15pF MAX986/MAX990/ 10mV overdrive MAX994 only, RPULL-UP = 5.1k 100mV overdrive 10mV overdrive 100mV overdrive MIN TYP 40 50 80 40 50 80 450 300 450 ns 300 450 300 20 s ns ns MAX UNITS
MAX985/MAX986/MAX989/MAX990/MAX993/MAX994
tPD+ Power-Up Time tPU
MAX985/MAX989/ MAX993 only, CL = 15pF
Note 1: The MAX98 _EUK specifications are 100% tested at TA = +25C. Limits over the extended temperature range are guaranteed by design, not production tested. Note 2: Inferred from the VOS test. Either or both inputs can be driven 0.3V beyond either supply rail without output phase reversal. Note 3: VOS is defined as the center of the hysteresis band at the input. Note 4: IB is defined as the average of the two input bias currents (IB-, IB+).
_______________________________________________________________________________________
3
Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators MAX985/MAX986/MAX989/MAX990/MAX993/MAX994
__________________________________________Typical Operating Characteristics
(VCC = 5V, VCM = 0V, TA = +25C, unless otherwise noted.)
SUPPLY CURRENT vs. TEMPERATURE
MAX985-01
SUPPLY CURRENT vs. OUTPUT TRANSITION FREQUENCY
MAX985-02
OUTPUT LOW VOLTAGE vs. OUTPUT SINK CURRENT
VIN+ < VINOUTPUT LOW VOLTAGE (mV) (VOL) 1000 VCC = 2.7V 100
MAX985-04
18 17 16 SUPPLY CURRENT (A) 15 14 13 12 11 10 9 8 -60 -40 -20 0 20 40 60 80 VCC = 2.7V VCC = 5.0V VIN+ > VIN-
1000
10,000
SUPPLY CURRENT (A)
100
VCC = 5.0V 10 VCC = 2.7V
VCC = 5.0V
10
1 100 0.01 0.1 1 10 100 1000 TEMPERATURE (C) OUTPUT TRANSITION FREQUENCY (kHz)
1 0.01 0.1 1 10 100 OUTPUT SINK CURRENT (mA)
OUTPUT HIGH VOLTAGE vs. OUTPUT SOURCE CURRENT
MAX985-08
OUTPUT SHORT-CIRCUIT CURRENT vs. TEMPERATURE
110 100 90 80 70 60 50 40 30 20 10 0
MAX985-06
INPUT OFFSET VOLTAGE vs. TEMPERATURE
MAX985-07
10,000 VIN+ > VIN1000 OUTPUT HIGH VOLTAGE (mV) (VCC - VOH)
120
1.1 0.9 OFFSET VOLTAGE (mV) 0.7 0.5 0.3 0.1 -0.1 -0.3
OUTPUT SINK CURRENT (mA)
VCC = 5.0V
100
VCC = 2.7V VCC = 5.0V
10
1
VCC = 2.7V
0.1 0.01 0.1 1 10 100 OUTPUT SOURCE CURRENT (mA)
-60
-40
-20
0
20
40
60
80
100
-60
-40
-20
0
20
40
60
80
100
TEMPERATURE (C)
TEMPERATURE (C)
PROPAGATION DELAY vs. CAPACITIVE LOAD (VCC = 3V)
MAX985-05a
PROPAGATION DELAY vs. CAPACITIVE LOAD (VCC = 5V)
510 490 VOD = 50mV
MAX985-05b
600 VOD = 50mV 550 TO VOUT = 50% OF FINAL VALUE
530
470 tPD (ns) 450 430 410 390 370
tPD (ns)
500
TO VOUT = 50% OF FINAL VALUE
450 TO VOUT = 10% OF FINAL VALUE 400 TO VOUT = 10% OF FINAL VALUE
350 0 200 400 600 800 1000 CAPACITIVE LOAD (pF)
350 0 200 400 600 800 1000 CAPACITIVE LOAD (pF)
4
_______________________________________________________________________________________
Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators
____________________________Typical Operating Characteristics (continued)
(VCC = 5V, VCM = 0V, TA = +25C, unless otherwise noted.)
PROPAGATION DELAY vs. TEMPERATURE
MAX985-09
MAX985/MAX986/MAX989/MAX990/MAX993/MAX994
PROPAGATION DELAY vs. INPUT OVERDRIVE
800 700
MAX985-10
450 VOD = 50mV 440 430 tPD (ns)
900
tPD (ns)
420 410 400 390 380 -40 -20 0 20
TO VOUT = 50% POINT OF FINAL VALUE
600 500 400 300 200 100 VCC = 2.7V VCC = 5.0V
TO VOUT = 10% POINT OF FINAL VALUE
40
60
80
100
0 0 40 80 120 160 200 INPUT OVERDRIVE (mV)
TEMPERATURE (C)
MAX985/MAX989/MAX993 PROPAGATION DELAY (tPD+)
MAX985-11
PROPAGATION DELAY (tPD-)
MAX985-12
MAX985/MAX989/MAX993 SWITCHING CURRENT, OUT RISING
MAX985-13
IN+
50mV/ div
IN+ IN+ 50mV/ div
50mV/ div
2V/div OUT OUT 2V/div OUT 2V/div ICC VOD = 50mV 100ns/div VOD = 50mV 100ns/div VOD = 50mV 100ns/div 1mA/div
SWITCHING CURRENT, OUT FALLING
MAX985-14
1MHz RESPONSE
MAX985-15
POWER-UP DELAY
MAX985-16
IN+ OUT 50mV/ div 2V/div
IN+ 50mV/ div VCC
ICC 1mA/div VOD = 50mV 100ns/div
OUT
2V/div
OUT
VIN- = 50mV VIN+ = 0V
VOD = 50mV 200ns/div 5s/div
_______________________________________________________________________________________
5
Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators MAX985/MAX986/MAX989/MAX990/MAX993/MAX994
______________________________________________________________Pin Description
PIN MAX985 MAX986 SOT23-5 1 2 3 4 5 -- -- -- -- -- -- -- -- -- -- -- -- -- SO 6 7 3 2 4 -- -- -- -- -- -- -- -- -- -- -- -- 1, 5, 8 MAX989 MAX990 SO/MAX -- 8 -- -- 4 1 2 3 5 6 7 -- -- -- -- -- -- -- MAX993 MAX994 SO -- 4 -- -- 11 1 2 3 5 6 7 8 9 10 12 13 14 -- OUT VCC IN+ INVEE OUTA INAINA+ INB+ INBOUTB OUTC INCINC+ IND+ INDOUTD N.C. Comparator Output Positive Supply Voltage Comparator Noninverting Input Comparator Inverting Input Negative Supply Voltage Comparator A Output Comparator A Inverting Input Comparator A Noninverting Input Comparator B Noninverting Input Comparator B Inverting Input Comparator B Output Comparator C Output Comparator C Inverting Input Comparator C Noninverting Input Comparator D Noninverting Input Comparator D Inverting Input Comparator D Output No Connection. Not internally connected. NAME FUNCTION
6
_______________________________________________________________________________________
Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators
_______________Detailed Description
The MAX985/MAX986/MAX989/MAX990/MAX993/ MAX994 are single/dual/quad low-power, low-voltage comparators. They have an operating supply voltage range between +2.5V and +5.5V and consume only 11A. Their common-mode input voltage range extends 0.25V beyond each rail. Internal hysteresis ensures clean output switching, even with slow-moving input signals. Large internal output drivers allow rail-to-rail output swing with up to 8mA loads. The output stage employs a unique design that minimizes supply-current surges while switching, virtually eliminating the supply glitches typical of many other comparators. The MAX985/MAX989/MAX993 have a push/pull output structure that sinks as well as sources current. The MAX986/MAX990/MAX994 have an opendrain output stage that can be pulled beyond VCC to an absolute maximum of 6V above VEE.
VCC R3
MAX985/MAX986/MAX989/MAX990/MAX993/MAX994
R1 VIN VCC R2 VEE OUT
VREF
MAX985 MAX989 MAX993
Figure1. Additional Hysteresis (MAX985/MAX989/MAX993)
Input Stage Circuitry
The devices' input common-mode range extends from -0.25V to (VCC + 0.25V). These comparators may operate at any differential input voltage within these limits. Input bias current is typically 1.0pA if the input voltage is between the supply rails. Comparator inputs are protected from overvoltage by internal body diodes connected to the supply rails. As the input voltage exceeds the supply rails, these body diodes become forward biased and begin to conduct. Consequently, bias currents increase exponentially as the input voltage exceeds the supply rails.
__________Applications Information
Additional Hysteresis
MAX985/MAX989/MAX993 The MAX985/MAX989/MAX993 have 3mV internal hysteresis. Additional hysteresis can be generated with three resistors using positive feedback (Figure 1). Unfortunately, this method also slows hysteresis response time. Use the following procedure to calculate resistor values for the MAX985/MAX989/MAX993. 1) Select R3. Leakage current at IN is under 10nA, so the current through R3 should be at least 1A to minimize errors caused by leakage current. The current through R3 at the trip point is (VREF - VOUT) / R3. Considering the two possible output states in solving for R3 yields two formulas: R3 = VREF / 1A or R3 = (VREF - VCC) / 1A. Use the smaller of the two resulting resistor values. For example, if VREF = 1.2V and VCC = 5V, then the two R3 resistor values are 1.2M and 3.8M. Choose a 1.2M standard value for R3. 2) Choose the hysteresis band required (VHB). For this example, choose 50mV. 3) Calculate R1 according to the following equation: R1 = R3 x (VHB / VCC) For this example, insert the values R1 = 1.2M x (50mV / 5V) = 12k. 4) Choose the trip point for VIN rising (VTHR; VTHF is the trip point for VIN falling). This is the threshold voltage at which the comparator switches its output from low to high as VIN rises above the trip point. For this example, choose 3V.
7
Output Stage Circuitry
These comparators contain a unique output stage capable of rail-to-rail operation with up to 8mA loads. Many comparators consume orders of magnitude more current during switching than during steady-state operation. However, with this family of comparators, the supply-current change during an output transition is extremely small. The Typical Operating Characteristics graph Supply Current vs. Output Transition Frequency shows the minimal supply-current increase as the output switching frequency approaches 1MHz. This characteristic eliminates the need for power-supply filter capacitors to reduce glitches created by comparator switching currents. Another advantage realized in highspeed, battery-powered applications is a substantial increase in battery life.
_______________________________________________________________________________________
Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators MAX985/MAX986/MAX989/MAX990/MAX993/MAX994
5) Calculate R2 as follows. For this example, choose an 8.2k standard value: 1 R2 = VTHR 1 1 - - V x R1 R1 R3 REF R2 = 1 1 1 3.0V - - 12k 2.2M 1.2 x 12k = 8.03k Use the following procedure to calculate resistor values: 1) Select R3 according to the formulas R3 = V REF / 500A or R3 = (VREF - VCC) / 500A - R4. Use the smaller of the two resulting resistor values. 2) Choose the hysteresis band required (VHB). For this example, choose 50mV. 3) Calculate R1 according to the following equation: R1 = (R3 + R4) x (VHB / VCC) 4) Choose the trip point for VIN rising (VTHR; VTHF is the trip point for VIN falling). This is the threshold voltage at which the comparator switches its output from low to high as VIN rises above the trip point. 5) Calculate R2 as follows: R2 = 1 VTHR 1 1 - - V x R1 R1 R 3 + R4 REF
6) Verify trip voltages and hysteresis as follows: 1 1 1 VIN rising: VTHR = VREF x R1 x + + R2 R3 R1 R1 x VCC VIN falling : VTHF = VTHR - R3 Hysteresis = VTHR - VTHF
MAX986/MAX990/MAX994 The MAX986/MAX990/MAX994 have 3mV internal hysteresis. They have open-drain outputs and require an external pull-up resistor (Figure 2). Additional hysteresis can be generated using positive feedback, but the formulas differ slightly from those of the MAX985/MAX989/MAX993.
6) Verify trip voltages and hysteresis as follows: VIN rising: VTHR = VREF x R1 x 1 1 1 + + R2 R3 + R4 R1 R1 x VCC VIN falling : VTHF = VTHR - R3 + R4 Hysteresis = VTHR - VTHF
VCC R3
Board Layout and Bypassing
R1 VIN VCC R2 VEE OUT R4
VREF
MAX986 MAX990 MAX994
Power-supply bypass capacitors are not typically needed, but use 100nF bypass capacitors when supply impedance is high, when supply leads are long, or when excessive noise is expected on the supply lines. Minimize signal trace lengths to reduce stray capacitance.
Figure 2. Additional Hysteresis (MAX986/MAX990/MAX994)
8
_______________________________________________________________________________________
Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators
Zero-Crossing Detector
Figure 3 shows a zero-crossing detector application. The MAX985's inverting input is connected to ground, and its noninverting input is connected to a 100mVp-p signal source. As the signal at the noninverting input crosses 0V, the comparator's output changes state.
Logic-Level Translator
Figure 4 shows an application that converts 5V logic levels to 3V logic levels. The MAX986 is powered by the +5V supply voltage, and the pull-up resistor for the MAX986's open-drain output is connected to the +3V supply voltage. This configuration allows the full 5V logic swing without creating overvoltage on the 3V logic inputs. For 3V to 5V logic-level translation, simply connect the +3V supply to VCC and the +5V supply to the pull-up resistor.
MAX985/MAX986/MAX989/MAX990/MAX993/MAX994
VCC
+5V (+3V) +3V (+5V)
2 100mV 4 IN+ OUT 1 3 IN100k 3 IN+ VCC 100k 4 IN-
2 VCC RPULL-UP 1 3V (5V) LOGIC OUT
OUT
MAX985
VEE 5 5V (3V) LOGIC IN VEE 5
MAX986
Figure 3. Zero-Crossing Detector
Figure 4. Logic-Level Translator
_____________________________________________Pin Configurations (continued)
TOP VIEW
N.C. 1 IN- 2 IN+ 3 VEE 4
8 7
N.C. VCC OUT N.C.
OUTA 1 INA- 2 INA+ 3 VEE 4
8 7
VCC OUTB INBINB+
OUTA 1 INA- 2 INA+ 3
14 OUTD 13 IND12 IND+
MAX985 MAX986
6 5
MAX989 MAX990
6 5
VCC 4 INB+ 5 INB- 6
MAX993 MAX994
11 VEE 10 INC+ 9 8 INCOUTC
SO
SO/MAX
OUTB 7
SO
_______________________________________________________________________________________
9
Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators MAX985/MAX986/MAX989/MAX990/MAX993/MAX994
________Typical Application Circuit
VCC VIN VCC IN+ OUT IN-
_Ordering Information (continued)
PART MAX989ESA TEMP. RANGE -40C to +85C -40C to +85C -40C to +85C -40C to +85C -40C to +85C -40C to +85C PINPACKAGE 8 SO 8 MAX 8 SO 8 MAX 14 SO 14 SO SOT TOP MARK -- -- -- -- -- --
*RPULL-UP
MAX989EUA MAX990ESA MAX990EUA MAX993ESD MAX994ESD
MAX98_ MAX99_
VEE VREF
* MAX986/MAX990/MAX994 ONLY
THRESHOLD DETECTOR
10
______________________________________________________________________________________
Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators
________________________________________________________Package Information
SOT5L.EPS
MAX985/MAX986/MAX989/MAX990/MAX993/MAX994
______________________________________________________________________________________
11
Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators MAX985/MAX986/MAX989/MAX990/MAX993/MAX994
___________________________________________Package Information (continued)
8LUMAXD.EPS
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
12 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 (c) 1997 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.


▲Up To Search▲   

 
Price & Availability of MAX990ESA

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X